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How Compliance Compensates for
Surface Roughness in Fibrillar Adhesion

C.-Y. Hui
Cornell University, Ithaca, New York, USA

N. J. Glassmaker
A. Jagota
Lehigh University, Bethlehem, Pennsylvania, USA

Fibrillar interfaces play an important role in the ability of many small animals to
adhere to surfaces. Surface roughness is generally deleterious to adhesion because
it hinders the ability of mating surfaces to make contact, but fibrillar surfaces com-
pensate for surface roughness by virtue of their enhanced compliance. We examine
the relationship between roughness and compliance by analyzing the mechanics of
detaching an array of fibrils from a substrate. The theory of Johnson, Kendall, and
Roberts is used to describe the interfacial adhesion of each fibril, and roughness is
modeled by making the fibril length a random variable subject to a probability dis-
tribution. We solve for the mean force response of a fibrillar array as a function of
the displacement of the entire array. From these results we extract the mean fibril-
lar pull-off force and work to separate the fibrillar array and substrate. We show
how the mean fibrillar pull-off force decreases with increasing roughness-height
standard deviation: the relationship is linear for small height standard deviation,
and the pull-off force trails off to zero for very rough surfaces. Conversely, the work
of separation is shown to be unaffected by small roughness-height standard
deviation, although it decreases toward zero for rougher surfaces. The effects of
roughness may be offset by increasing fibrillar compliance; for small roughness-
height standard deviation, we show that the reduction in pull-off force is inversely
proportional to the normalized compliance. We also show that the work of sepa-
ration increases linearly with the compliance when the compliance is large com-
pared with the roughness-height standard deviation.
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INTRODUCTION

A number of recent studies have explored the mechanics of fibrillar
interfaces [1–4], which are commonly found in small animals as fric-
tion or adhesion promoters (see, e.g., [2, 5–7]). Among these studies,
the results of several interesting calculations suggest that interfacial
arrays of small length scale fibrils (� 5mm in diameter) can possess
greater failure strength and=or toughness than corresponding flat
interfaces [1, 2, 4, 8]. An additional benefit of the fibrillar geometry
is its ability to arrest interfacial crack propagation by eliminating
crack-like stress concentrations and promoting a more uniform distri-
bution of load sharing among fibrils [4, 8]. Moreover, because of an
effective increase in surface compliance, fibrillar interfaces are
expected to be able to make contact with and adhere to a variety of
surfaces with varying degrees of roughness [1, 3]. This is important
to biological adhesion, because animals in their natural habitats
encounter many types of surfaces, each with its own roughness
characteristics.

Many conventional adhesives suffer a reduction in adhesion when
they make contact with a rough surface. For example, pressure-
sensitive adhesives are ineffective on nonsmooth surfaces and are
easily fouled by particulates. On the other hand, a fibrillar surface
should be more capable of maintaining its contact and adhesion
properties against rough surfaces, even for high modulus materials.
Persson has quantified some important aspects of this problem and
determined the work necessary to fail a fibrillar interface in the pres-
ence of roughness [1]. He found that the work to fail a fibrillar contact
array decreases with an increase in roughness-height variation. In his
article, however, the pull-off force is left as a parameter, so that it is
difficult to judge the role of compliance. Similarly, Greenwood and
Williamson have studied adhesive contact of a rough surface with ran-
dom asperities to a smooth hard substrate [9], but, in their model, the
asperities are not backed by fibrils, so the role of fibrillar compliance
is not clear.

Here, we choose a particular model for the interfacial adhesion (the
theory of Johnson, Kendall, and Roberts [10], JKR), which allows us to
characterize the role of compliance more carefully. In addition, the
model is simple enough that we are able to obtain closed-form results
for the limit of small roughness-height standard deviation. We note
that the JKR theory is only an approximate model for most biological
fibrillar-adhesion systems, because fibrils in these systems typically
have plate-like ‘‘spatular’’ ends [5–7, 11]. The JKR geometry, con-
versely, is best suited for convex, e.g., spherical, contacts. As a result,
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it is almost certain that the JKR theory will be inaccurate in modeling
the force-displacement response of biological fibrils over some range of
displacement.

Nevertheless, Arzt et al. have shown that the JKR theory describes
the net adhesion force of the terminal elements of biological fibrils
quite well for many species of animals [2]. In particular, they showed
that JKR adhesion-force scaling is consistent with the scaling of setal
diameter in organisms of vastly different body mass. Because of this,
we use the JKR theory in spite of its limitations and expect the results
to be indicative, if not precisely predictive, of the behavior of biological
fibrillar adhesion. Moreover, we note that our results may be more
generally applicable in technological applications where the JKR con-
tact theory is more appropriate, i.e., biomimetic fibrillar interfaces
with rounded, approximately spherically ended fibrils.

To complement Persson’s energy calculation mentioned previously,
we determine here the mean fibrillar load as a function of the surface
separation. In particular, we find how the tensile pull-off load depends
on the spring compliance and material properties as well as the rough-
ness-height standard deviation. Also, we determine the work of separ-
ation as a function of the same parameters for our particular choice of
JKR as the adhesion model.

The structure of the article is as follows: Specific aspects of the
model are presented in the next section, ‘‘Problem Formulation.’’ In
our model, we use the JKR force-displacement relationship to describe
contact between fibrils of random length and a flat substrate; the
randomness in fibril length is our way of approximating a rough
surface. After manipulating the governing equations, we show that
the average fibrillar force may be expressed in terms of the net dis-
placement of the fibrillar array through the evaluation of an integral.
In the ‘‘Results’’ section, we present the results of our calculations,
which are largely graphical because the integral for the average
fibrillar force must be evaluated numerically. We interpret the force-
displacement response of the fibrillar array in terms of the two impor-
tant adhesion-performance quantities mentioned previously: the
maximum tensile pull-off stress and the work of separation. Finally,
before concluding, we discuss the relevance of our results to biological
fibrillar-adhesion systems and synthetic mimics of the same.

PROBLEM FORMULATION

To examine our notions about roughness systematically, we consider
the mechanical model of a fibrillar surface shown in Figure 1. Each
fibril consists of an elastic spring and hemispherical end. The linear
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springs represent the fact that the fibrils have some nonzero
compliance

C � L=ðpER2Þ ð1Þ

for cylindrical fibrils oriented perpendicularly to their backing. Here, L
is the mean fibril length, E is the elastic modulus, and R is the fibril
radius (assumed equal to the hemisphere radius). Note that if the
fibrils are inclined at an angle other than 90�, then the compliance is
considerably enhanced and one can use beam theory to obtain its value.
For example, if the fibrils are oriented at an angle h to the backing, then

C � L sin h½1þ 4L
2
=ð3R2Þ cot2 h�=ðpER2Þ: ð2Þ

(See Reference [3] for a derivation.)
Nominally, all fibrils have the same compliance, because we use the

mean length when calculating it. However, the fibrils do vary in
length, and we describe this using a statistical distribution. Although
we explicitly treat the case of variable fibril length against a flat
surface, if the variation in length is small compared with the mean
length, as expected physically, our results can be applied to the case
when variability arises because of surface roughness or both surface
roughness and length.

�
Alternatively, our results should also be valid

�Note that when fabricating synthetic fibrillar structures, it is likely that fibril length
across the array will not be perfectly uniform, even though the roughness of the opposing
adherend may be insignificantly small. Since van der Waals interactions are quite short
ranged (�2nm), these apparently small variations in fibril length will have significant
effect on the pull-off force and effective toughness.

FIGURE 1 Schematic illustration of an array of nonuniform length fibrils.
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when the roughness profile has height variation on the order of the
fibril length if the roughness wavelength is on the same order as the
fibril separation.

To begin the formulation, define the deflection of the ith fibril Di as

Di � d� Li; ð3Þ

where d is the surface separation shown in Figure 1.
As discussed previously, we model the contact between the fibrils’

hemispherical ends and the substrate using the JKR theory. From
the JKR theory, we know that for a load-controlled test, pull-off occurs
when the load reaches a critical tensile value

Pc ¼ � 3

2
pRW; ð4Þ

where R is the radius of the hemisphere and W is the work of adhesion
between the surfaces. When the load reaches this value, the JKR
theory specifies the displacement of points far from the contact zone,
dc, and contact radius, ac, to be

dc ¼ � 3R

4

� �1=3 pW
4E�

� �2=3
ð5Þ

and

ac ¼
3R

4

� �2=3 2pW
E�

� �1=3
; ð6Þ

where E� ¼ E=ð1� n2Þ, for a material with Young’s modulus, E, and
Poisson’s ratio, n. (see Reference [10] for derivations of Equations
(4)–(6).)

Thus, if a fibril is at the instant of pull off,

Dc ¼ �CPc � dc: ð7Þ

That is, for Di > Dc; the load on the ith fibril becomes zero. We are
interested in situations where Di � Dc, i.e., when the fibril is in contact
and bears load. In this case,

Di ¼ �CPi � di; ð8Þ

where C is the compliance of the spring, and the load, Pi, and displace-
ment, di; are

Pi ¼
4E�a3

i

3R
� 2a

3=2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pE�W

p
ð9Þ
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and

di ¼
a2
i

R
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pWai

E�

r
; ð10Þ

according to the JKR theory [10]. Henceforth, we dispense with the
subscript i notation with the understanding that P, d, a, and D are
quantities associated with single fibrils.

We consider the length of a fibril to be a random variable, described
by the probability density function p(L). Thus, the mean length is
given by

L ¼
Z 1

0

pðLÞLdL: ð11Þ

Furthermore, if we can find the function fPðLÞ, which expresses the
load P on a fibril as a function of L, then the mean fibrillar load is

P ¼
Z 1

0

pðLÞfPðLÞdL: ð12Þ

This is the important quantity for understanding the contact mech-
anics of our array of fibrils of nonuniform length. Indeed, the stress
the fibrillar array supports is just P times the fibrillar areal density.
Thus, let us proceed to calculate P.

From Equations (3) and (8), it is clear that

P ¼ ðL� d� dÞ=C; ð13Þ

However, because d is also an unknown function of L, this does not
explicitly provide the desired fPðLÞ. Instead of trying to determine this
function, let us rather change the integration variable in Equation (12)
to the contact radius, a. Substituting Equations (9) and (10) in (13),
one obtains

L ¼ dþ a2

R
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pWa

E�

r
þ C

4E�a3

3R
� 2a3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pE�W

p� �
; ð14Þ

so that

dL ¼ 2a

R
�

ffiffiffiffiffiffiffiffiffiffiffi
pW
2E�a

r
þ C

4E�a2

R
� 3a1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pE�W

p� �" #
da: ð15Þ

We can use Equation (9) to express P as a function of a in the inte-
grand of Equation (12), rather than trying to find fPðLÞ. Then, given
the probability-density function, we can merely substitute Equation

704 C.-Y. Hui et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
3
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



(14) to get the entire integrand to be a function of a. For the limits of
integration, the upper limit remains the same but the lower limit
changes to ac, because the fibril supports no load for a � ac

y and nega-
tive contact radii are not possible.

To illustrate our model, let us assume the fibril lengths are nor-
mally distributed. In this case,

pðLÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
exp �ðL� LÞ2=ð2s2Þ

h i
; ð16Þ

where L is the mean fibril length and s is the standard deviation.
Using Equations (9) and (14)–(16), we can express the integral in
Equation (12) entirely in terms of a.

Before doing this, let us first normalize the equations usingePP ¼ P=jPcj; ~aa ¼ a=ac; ~dd ¼ d=jdcj; eLL ¼ L=jdcj;
~ss ¼ s=jdcj; eDD ¼ ðd� LÞ=jdcj:

ð17Þ

The JKR Equations (9) and (10) become

ePP ¼ ~ff ð~aaÞ � ~aa3 � 2~aa3=2 ð18Þ

and

~dd ¼ ~ggð~aaÞ � 3~aa2 � 4~aa1=2: ð19Þ

Furthermore, Equation (15) becomes

d eLL � ~hhð~aaÞd~aa ¼ 3 eCCð~aa2 � ~aa1=2Þ þ 2ð3~aa� ~aa�1=2Þ
h i

d~aa; ð20Þ

where

eCC � CjPcj
jdcj

¼ 6pC
ðE�RÞ2W

3p2

 !1=3
: ð21Þ

Note here the physical significance of the normalized compliance, eCC: it
is the ratio of the compliance of the fibril to the intrinsic compliance of
the attachment. The intrinsic compliance of the attachment is con-
trolled by the flexibility of the contacting ends or ‘‘spatula’’ [5, 11]
for animal setae. Continuing, substitution of the normalized forms of

yThis analysis assumes each fibril fails in load control. Because we are primarily
interested in highly compliant fibrils, this is an excellent assumption. If, however, C is
very small, then the fibrils will continue to sustain a decreasing load until a different
(smaller) ac is reached. More on this in the discussion section.
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Equations (9) and (14)–(16) in equation (12) gives

ePP ¼ 1ffiffiffiffiffiffi
2p

p
~ss

Z 1

1

exp � eDDþ eCC~ff ð~aaÞ þ ~ggð~aaÞ
� �2

2~ss2
� ��1

� 	
~ff ð~aaÞ ~hhð~aaÞd~aa: ð22Þ

We evaluated this integral numerically, and results are shown in
Figures 2 and 3. Before continuing with a discussion of these results,
we should comment on a few of our assumptions in this analysis.
Strictly speaking, our solution is valid only if all fibrils are initially
brought into contact and then pulled off. Because some compression
is required for initial contact, the tensile (adhesion) force our model
predicts may be overestimated if this is not the case. On the other hand,
because in Equations (4)–(6) we require fibrils to fail at the JKR critical
load for a load-controlled test, we may slightly underestimate the
adhesion in situations of displacement control. (Some of the fibrils at
the verge of failure in load control will continue to carry load for a
short time longer in displacement control.) We expect both of these
effects to be minor and not to alter any of our results significantly.

DISCUSSION

Numerical Results

The plots in Figure 2 show the mean fibrillar load, ePPð eDDÞ, as calculated
from Equation (22) via numerical quadrature for several values of the
parameters ~ss and eCC. Recall that eDD is the normalized distance separat-
ing the fibrillar array from the substrate, whereas ~ss is the normalized
standard deviation in the fibril-height distribution and eCC is the
normalized fibrillar compliance. The curves in Figure 2 should be
interpreted as the average force per fibril resisting separation after
the two surfaces have been compressed against each other sufficiently
so that all fibrils are initially in contact. With increasing separation,eDD, the initially compressive forcez (positive ePP) passes through zero

and turns tensile (negative ePP) for all cases in Figure 2. The value ofeDD at which ePP is first zero, eDD�
, is the separation at which the interface

rests when not subject to external loading. With further increase in eDD,
the force becomes negative, increases in magnitude until a maximum
tension is attained, and then decreases, eventually to zero at full
separation of the interface.

zNote that in Figure 2, we plot� ePP rather than ePP. Thus, in the plots, tensile forces plot
as positive numbers, which is the usual convention in solid mechanics. Note, however,
that throughout the article (and in the plots), forces are actually tensile when they have
negative values and compressive when they have positive values, which is the standard
convention in contact-mechanics calculations.
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FIGURE 2 Plots of the mean load, ePP, as a function of the surface separation,eDD: (a) fixed compliance eCC, varying standard deviation of fibril length ~ss and (b)
fixed standard deviation ~ss, varying compliance eCC. All quantities in the plots
are normalized; see text for definitions.
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Measures of Adhesion Performance

Two important pieces of information that one can extract from theePPð eDDÞ curves are (a) the peak tensile pull-off stress, equal to

RPcj ePPmaxj; ð23Þ

FIGURE 3 Plots of themean tensile pull-off load j ePPmaxj versus fibril compliance,eCC, and fibril height standard deviation, ~ss: (a) contours of constant eCC, (b) contours
of constant ~ss, and (c) a plot of the full failure surface combining the information in
(a) and (b). All quantities in the plots are normalized; see text for definitions.
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which is the strength of the interface, and (b) the work of separation

eUU � U=ðpW=2Þ � eRR Z 1

eDD �
ePPð eDDÞd eDD; ð24Þ

which is the toughness of the interface. Here, R is the fibrillar areal
density, eRR � Rjacj2; andW is the intrinsic work of adhesion defined pre-
viously. Taking this integral to represent the toughness of the inter-
face incorporates the assumption that when a fibril detaches, all its
stored elastic energy is lost. We have argued for this assumption in
other work. (See References [4, 8].)

The mean fibrillar pull-off force j ePPmaxj is shown in Figure 3, and
the work of separation eUU=eRR is shown in Figure 4. The j ePPmaxj values in

Figure 3 are obtained by finding the peak tensile value of ePPð eDDÞ from
curves like those shown in Figure 2, and the work of separation is
obtained by numerically integrating the same curves, as per Equation
(24). Recall that in Equation (24) the lower limit, eDD�

, is just the value

of eDD where ePP is first zero when pulling the fibrillar array out of
compression. Also, although the upper limit is infinity, in practice we

integrated the ePPð eDDÞ curves until ePP decayed to zero.

FIGURE 3 Continued.
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In Figures 3 and 4, we see that the normalized measures of

adhesion performance, j ePPmaxj and eUU=eRR, are functions of only two
normalized parameters: the standard deviation in fibril height

FIGURE 4 Plots of the separation energy, eUU=eRR, as a function of the fibril com-
pliance, eCC, and fibril height standard deviation, ~ss. In (a), the curves are results
of numerical quadrature calculations. In (b), only the data points are results of
numerical calculations. The lines in (b) are the best linear fits to each set of data
points. All quantities in the plots are normalized; see text for definitions.
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(i.e., in roughness height), ~ss, and the fibrillar compliance, eCC. This should
also be clear from Equations (18)–(20) and (22) and the definitions of

j ePPmaxj and eUU=eRR. The coarsest conclusion of this study clearly emerges

from an inspection of Figures 3 and 4: both j ePPmaxj and eUU=eRR decrease
with increasing ~ss and increase with increasing eCC. That is, the
strongest adhesion results for compliant fibrils attached to approxi-
mately flat surfaces, whereas the weakest adhesion results for stiff
fibrils attached to rough surfaces. We refine this statement in the next
two sections by considering some details of the features of these trends.

For example, examination of Figure 4a reveals that for small rough-
ness-height deviation, ~ss, the work of separation remains approximately
constant. It then drops off toward zero at larger ~ss. This is in stark con-
trast to the results for pull-off force, which decreases most quickly at
small ~ss. (See Figure 3a and c.) This identifies an important aspect of
fibrillar adhesion in the presence of roughness: although a small
amount of roughness does not significantly change the work necessary
to fail the interface, it dramatically reduces the force necessary to
accomplish it. This is physically sensible, because in our model, for
small ~ss, all fibrils still must follow approximately the same JKR P–d
failure curve. Thus, the total work does not change. However, the
fibrils fail at different instants, when ~ss > 0, which quickly reduces
the pull-off force. When ~ss becomes larger, the amount of initial com-
pression in each spring varies significantly from fibril to fibril, so that
the P–d failure curve is significantly different from fibril to fibril. As a
result, even the work of separation is reduced at large ~ss, as we see in
Figure 4a. Having now a qualitative understanding of the behavior of
the solution at small ~ss, let us turn to some quantitative statements
about the behavior of the solution in this and another important limit.

Approximations to the Solution in Several Limits

In Figure 3a, we observe another interesting feature of the solution: the
mean pull-off load decreases approximately linearly in ~ss for small ~ss. To

understand this result, we consider an approximation for ePPð eDDÞ when ~ss
is small. As ~ss ! 0, all fibrils will fail at the same load and displacement,

xNote that the mean pull-off load is limited by the JKR pull-off load, which is why
j ePPmaxj never exceeds one. It can equal one only when all fibrils fail simultaneously,
which, for finite compliance, happens only when there is no roughness, i.e., when,
~ss ! 0; as we see in Figure 3. As an aside, there is no limit to the separation energy.
Indeed, because the elastic strain energy stored in the fibrils is considered to be part
of the energy lost during separation by the definition of eUU=eRR in Equation (24),
eUU=eRR ! 1 as eCC ! 1:
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that is, when d ¼ dc and P ¼ Pc
x; this corresponds to the point eDD ¼ eCCþ 1.

(See Equations (3) and (7).) One can show that near this point

ePPð eDDÞ � ePP1ð eDDÞ � � 1

2
erfc

eDD� eCC� 1ffiffiffi
2

p
~ss

 !
: ð25Þ

(See Appendix 1.) Furthermore, when eDD << eCCþ 1 (strong com-
pression),

ePPð eDDÞ � ePP2ð eDDÞ � � eDD= eCCþ l; ð26Þ
where l is a constant. Equation (26) is essentially a restatement of
Equation (13) in the limit eDD << eCCþ 1. Note that in this limit,
~dd / ePP 2=3

, so that Equation (26) is correct as long as eCC is of order 1 or
greater. (If eCC is less than order 1, then one cannot neglect the d term
in Equation (13).) To determine the constant l, let us enforce the
condition ePP2ð eDD ¼ eCCþ 1Þ ¼ �1; ð27Þ
which is a better and better approximation as ~ss ! 0. One obtains
l ¼ 1= eCC. Furthermore, the first two terms of the power series forePP1ð eDDÞ near eDD ¼ eCCþ 1 are

ePP1ð eDDÞ � � 1

2
þ
eDD� eCC� 1ffiffiffiffiffiffi

2p
p

~ss
: ð28Þ

Now ePP1ð eDDÞ and ePP2ð eDDÞ represent a bilinear approximation to ePPð eDDÞ for alleDD < eCCþ 1. The maximum tensile load occurs where ePP1ð eDDÞ ¼ ePP2ð eDDÞ;
that is, when

eDD ¼ 1

2

eCC2

eCCþ
ffiffiffiffiffiffi
2p

p
~ss
þ eCCþ 2

 !
: ð29Þ

Thus, the maximum tensile load is given by

ePPmax � �1þ
ffiffiffiffiffiffi
2p

p
~ss

2ð
ffiffiffiffiffiffi
2p

p
~ssþ eCCÞ � �1þ

ffiffiffi
p
2

r
~sseCC : ð30Þ

We see that this approximation for the change in ePPmax due to rough-
ness is linear in ~ss (when ~ss is small) and inversely proportional to eCC.
Although we believe this is a reasonable approximation for very
small ~ss, it is difficult to check, because numerical calculations are
inaccurate or impossible because of the behavior of the integrand
of Equation (22) for small ~ss. When comparing Equation (30) with
the numerical calculations we have done, we see that, practically
speaking, it becomes accurate only for eCC 	 10 when ~ss is of order
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FIGURE 5 Approximations to the peak tensile load in the limit of small fibril
height standard deviation, ess: (a) approximation resulting from bilinear model

of ePPð eDDÞ, Equation (30) and (b) phenomenological approximation, Equation

(31). Data points are numerical results; solid lines are approximations. All

quantities in the plots are normalized; see text for definitions.
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0.1. (See Figure 5a for a plot of this comparison.) For this crude
bilinear model, we expect little more, especially because its accuracy
is poorest in the region of interest (near the pull-off load).

However, using Equation (30) as a guide, we found a phenomeno-
logical relationship based on the computations that works well over
a larger range of ~ss, i.e.

ePPmax � �1þ ~ss

a eCCþ p
; ð31Þ

where a � 0:4760. This model works very well for ~ss � 2, as long as eCC is
about order 1 or larger. (See Figure 5b for a plot comparing Equation
(31) to the numerical results.)

In addition to this approximation for the pull-off force in the limit
of small ~ss, a scaling law for the work of separation can be obtained
in the limit when eCC >> ~ss, which is the ideal case for geckos and other
animals. In this limit, the bilinear approximation given previously
(Equations (26) and (28)) becomes very good, and ePPmax ! �1. Skipping
the details, it is straightforward to show that the work of separationeUU=eRR ! eCC ePP2

max=2 ¼ eCC=2 when eCC >> ~ss for the bilinear approximation.
In dimensional form, U ! RCP2

c=2, i.e., the work of separation is
dominated by the elastic energy stored in the springs, which is exactly
what one expects in the large compliance limit.

By observing Figure 4b, which plots eUU=eRR as a function of eCC for sev-
eral values of ~ss, it is clear that the approximation eUU=eRR ! eCC=2 does a
very good job of predicting the slope of eUU=eRR in the proper limit. Indeed,
for the case ~ss ¼ 0 in that plot, the slope is exactly 1=2. However,
although eUU=eRR is linear in eCC for all cases of ~ss shown, the slope increases
by a significant, although small, amount for the other curves. (The
slope of the ~ss ¼ 8 case is roughly 0.62.) This is to be expected, because
the assumption eCC >> ~ss is not well satisfied for the range of data plotted
in Figure 4b when ~ss > 1. Note also that there is a nonzero constant
added to each of the linear fits in Figure 4b that the bilinear model
does not capture, so that, in facteUU=eRR ! eCC=2þ b; eCC >> ~ss: ð32Þ
In the case when ~ss ¼ eCC ¼ 0, we can integrate the JKR force displace-
ment relationship to find b � 2:22.

Interpretation of Results Relevant to Biological Setae
and Synthetic Mimics Thereof

From all the plots in Figures 2–4 and the foregoing discussion, we see
that roughness has a significant effect on the adhesion of a fibrillar
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interface. As a practical example of a synthetic fibrillar array that one
might fabricate, consider a case in which the fibrils are composed of
the rubbery polymer poly(dimethylsiloxane) (PDMS) (E� � 5 MPa;
W � 50mJ=m2) and have a radius of curvature R ¼ 1 mm. In this
case, the critical displacement for pull-off jdcj is approximately
35nm. Thus, for eCC � 1, if the standard deviation in fibril height
(roughness height) is 70 nm, the maximal adhesion force is reduced
by more than half from its maximum value (Figure 2a, ~ss ¼ 2). For
roughness-height deviation of more than 200nm, the adhesion is
nearly zero (Figure 2a, ~ss ¼ 6).

As we mentioned, these results are for normalized compliance equal
to 1. For PDMS, and the R value previously mentioned, jPcj=jdcj �
6:5N=m: Also, if we assume the fibrils are cylindrical and oriented nor-
mal to the backing and substrate, Equation (1) states that C ¼ L=
ðpR2EÞ, so that eCC � 1 corresponds to fibrils of length 1.8 mm. It is quite
conceivable to be able to fabricate such PDMS structures using photo-
lithography and molding techniques, as described, e.g., in Reference [3]
If the fibril length, L, is increased to 10 mm, which is also possible to
fabricate, C ¼ L=ðpR2EÞ � 0:85m=N and eCC � 5:6.

It is clear from both Figure 2b and Figure 3a–c that such an
increase in compliance helps to mitigate the effects of roughness. How-
ever, compliance does not affect the pull-off load as strongly as rough-
ness, so that a correspondingly larger increase in compliance is
required to offset the loss in peak load for increased roughness. This
can be accomplished by increasing the mean fibril length, although
this cannot be done indefinitely, because fibrils with too great an
aspect ratio will adhere to each other laterally, preventing their proper
functioning [3]. Another way to increase compliance at a fixed aspect
ratio is to orient the fibrils at an angle of < 90� to the backing. The
additional compliance supplied by allowing the fibrils to function in
bending mode can be quite significant, especially for high aspect ratio
fibrils. (See Equation (2).)

Because the compliance is smaller for higher modulus materials
such as keratin (E� � 1GPa), which composes most biological fibrils,
the use of angled fibrils becomes a necessity. Geckos appear to have
surmounted the roughness problem in this way. In the case of the
tokay gecko (Gekko gecko), the fibrils are oriented at an angle of
approximately 30� to the substrate at failure [5]. If we consider a setal
aspect ratio, L=R, of 30, which is a conservative estimate for these
animals, the compliance is enhanced 1000 times over fibrils oriented
normal to the substrate. For keratin with L ¼ 30 mm and R ¼ 1mm,
the normalized compliance eCC � 10. For an aspect ratio of 100, with
L ¼ 100 mm and R ¼ 1mm, which is not unreasonable based on SEM
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studies of gecko setae (see, e.g. reference [7]), eCC � 370. Note from the
PDMS example that without such large values of compliance, fibril-
lar adhesion would be poor except on the smoothest of substrates.

We should note here that compliance enhancement as a result of
fibrils undergoing a bending mode of deformation is not the only avail-
able mechanism biology has employed to overcome roughness. In fact,
highly compliant structures are built into most biological adhesion
systems at many levels. For instance, in lizards, setae are attached
to a flexible membranous backing layer of skin, which is attached to
the soft flesh of the toe. At a much smaller scale, a very important
means by which nearly all biological setae attain a large amount of
contact compliance is through the thin plate-like spatulas found at
their ends [11], as mentioned in the introduction. Although the JKR
theory is not a good model for adhesion of these structures (see rather
Reference [11]), these very flexible plates allow for more setae to make
and maintain intimate contact with the substrate.

Before concluding, let us make one final comment about the
relevance of our results to biological adhesion. Although both the
pull-off stress and work of separation are important quantities for
understanding the adhesion performance of a fibrillar interface, the
work of separation is likely to be the most critical quantity to lizard
adhesion, because we expect detachment to occur by crack propa-
gation from the edge of the toe-substrate contact region in this
case. The failure will occur when the stored strain energy in the
toe structure available for propagating the crack is greater than
the calculated work of separation. Conversely, in the case of insects,
the foot pad is much smaller. As a result, one could imagine situa-
tions in which all setae on the foot are in a state of equal load shar-
ing. In this case, the pull-off stress would be the most important
quantity, and failure would occur when the stress on the fibrils
exceeds the critical value.

CONCLUSION

We studied the mechanics of fibrillar adhesion against a rough sur-
face. In our model, the fibrils consisted of linear springs terminated
by hemispheres that make JKR adhesive contact with a flat surface.
Roughness was modeled by making the fibril length a random variable
that follows a continuous probability distribution.

When the fibril length (roughness height) is normally distributed,
we found that two parameters determine the mean fibrillar load: the
normalized standard deviation in fibril length (~ss) and the normalized
fibrillar compliance ( eCC). Full numerical solutions for the mean fibrillar
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load as a function of displacement of the fibrillar array, the mean
pull-off force, and the work of separation of the fibrillar array were
presented for a large range of the parameters ~ss and eCC. Analytic asymp-
totic results were given in several limits that confirmed the scaling
indicated by the numerical calculations.

Several important conclusions were evident from our analysis.
First, the mean fibrillar pull-off force decreases with increasing rough-
ness-height standard deviation. The relationship is linear for small ~ss,
with the pull-off force trailing off to zero as ~ss is further increased. The
effect of increasing compliance is to offset that of roughness; for small
~ss, the decrease in pull-off force with increasing ~ss is inversely pro-
portional to eCC. Moreover, unlike the pull-off force, we found that the
fibrillar interfacial work of separation is constant for small rough-
ness-height standard deviation and decreases to zero for rougher sur-
faces. However, similar to the pull-off force, the work of separation
increases for increased compliance; in the limit when eCC >> ~ss, we found
that the work of separation is linearly proportional to eCC, with slope
equal to 1=2. These results were related to recent findings regarding
fibrillar adhesion in lizards and insects.
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APPENDIX 1

The behavior of ePPð eDDÞ for small values of ~ss can be obtained using
the Laplace method. (For a discussion of the Laplace method, see
Reference [12].) Let

k � 1=ð2~ss2Þ; ðA1Þ

such that k ! 1 as ~ss ! 0. We can rewrite Equation (20) as

ePPð eDDÞ ¼ 1ffiffiffiffiffiffi
2p

p
~ss

Z 1

1

e�k/ð~aaÞf ð~aaÞhð~aaÞd~aa; ðA2Þ
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where

/ð~aaÞ ¼ eDDþ eCC~ff ð~aaÞ þ ~ggð~aaÞ
h i2

: ðA3Þ

See also Equations (16)–(18).
The essence of the Laplace method is that the behavior of the

integral

IðkÞ �
Z 1

1

e�k/ð~aaÞf ð~aaÞhð~aaÞd~aa ðA4Þ

for large k is completely dictated by the rapid exponential growth of
the function e�k/ð~aaÞ at the minimum of /ð~aaÞ. Specifically, if the function
/ð~aaÞ has a minimum at ~aa ¼ c 2 ½1;1Þ, then it is only the immediate
neighborhood of ~aa ¼ c that contributes to the full asymptotic expan-
sion of IðkÞ.

Note that the minimum of /ð~aaÞ for ~aa 2 ½1;1Þ occurs at ~aa ¼ 1 ifeDD� eCC� 1 > 0. In this case, the function /ð~aaÞ is monotonically increas-
ing in ~aa 	 1, so that d/ð~aaÞ=d~aa > 0 at ~aa ¼ 1. Hence, the inverse function
exists, and Equation (A4) is

IðkÞ ¼
Z 1

1

e�kuFðuÞdu
d~aa

d~aa; ðA5Þ

where

u ¼ /ð~aaÞ; ðA6aÞ

FðuÞ � f ð~aaðuÞÞhð~aaðuÞÞ: ðA6bÞ

The Laplace method implies that the leading behavior of I(s) is

IðkÞ � FðuÞ d~aa
du

� 	




u¼/ð1Þ

Z 1

/ð1Þ
e�kudu ¼ FðuÞ d~aa

du

� 	




u¼/ð1Þ

e�k/ð1Þ

k
: ðA7Þ

Note that

FðuÞ d~aa
du

� 	




u¼/ð1Þ

¼ f ð1Þhð1Þ
du
d~aa

� �
~aa¼1


 ðA8Þ

Further more,

/ð1Þ ¼ ð eDD� eCC� 1Þ2; ðA9aÞ
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f ð1Þhð1Þ ¼ �4; ðA9bÞ

du

d~aa

� �
~aa¼1

¼ 8ð eDD� eCC� 1Þ; ðA9cÞ

and, thus,

IðkÞ ¼ � exp½�kð eDD� eCC� 1Þ2�
2kð eDD� eCC� 1Þ

ðA10Þ

and

ePPð eDDÞ ¼ � ~ss exp½�ð eDD� eCC� 1Þ2=ð2~ss2Þ�ffiffiffiffiffiffi
2p

p
ð eDD� eCC� 1Þ

: ðA11Þ

In other words, if ð eDD� eCC� 1Þ=~ss >> 1, Equation (A11) implies that
the load is exponentially small. The load is significantly only ifeDD ffi eCCþ 1. However, Equation (A11) is not valid if eDD� eCC� 1 ¼ 0,
because d/ð~aaÞ=d~aa ¼ 0 at ~aa ¼ 1 when this is true. Our assumptions
are violated in this case, and Equation (A8) is not valid.

To investigate the load when eDD ffi eCCþ 1, we modify the Laplace
method by writing a Taylor series for /ð~aaÞ about the point ~aa ¼ 1.
Letting e � eDD� eCC� 1, one has

/ð~aaÞ � e2 þ 8eð~aa� 1Þ þ ½16þ ð7þ 9 eCC=2Þe�ð~aa� 1Þ2: ðA12Þ

Because e is small, we let

/ð~aaÞ � e2 þ 8eð~aa� 1Þ þ 16ð~aa� 1Þ2 ¼ ½4ð~aa� 1Þ þ e�2: ðA13Þ

This approximation for /ð~aaÞ has a minimum at

~aa ¼ ~aa� � 1� e=4: ðA14Þ

When e < 0, the minimum of /ð~aaÞ for ~aa 2 ½1;1Þ does not occur at ~aa ¼ 1
but occurs rather at ~aa ¼ ~aa� for small e. Note that we are most inter-

ested in the case jej << 1 and e < 0, because the maximum in ePPð eDDÞ
occurs at eDD just less than eCCþ 1 for small ~ss. (See Figure 2.) For the rest
of this calculation, we focus on the situation where jej << 1 and e < 0.

Equation (A2) becomes

ePPð eDDÞ � 1ffiffiffiffiffiffi
2p

p
~ss

Z 1

1

e�k½4ð~aa�1Þþe�2f ð~aaÞhð~aaÞd~aa

� f ð~aa�Þhð~aa�Þffiffiffiffiffiffi
2p

p
~ss

Z 1

0

e�k½4nþe�2dn:
ðA15Þ
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If we let w ¼ 4n þ e and x ¼ w
ffiffiffi
k

p
, then

ePPð eDDÞ � f ð~aa�Þhð~aa�Þ
4
ffiffiffiffiffiffi
2p

p
~ss

Z 1

e
e�kw2

dw ¼ f ð~aa�Þhð~aa�Þ
4
ffiffiffiffiffiffiffiffi
2pk

p
~ss

Z 1

e
ffiffi
k

p e�x2dx: ðA16Þ

The integral can be evaluated, and one has

ePPð eDDÞ � f ð~aa�Þhð~aa�Þ
8

erfc
eDD� eCC� 1ffiffiffi

2
p

~ss

 !
; ðA17Þ

where erfc is the complementary error function. Note that when e > 0
and jej << 1, Equation (A17) is still a valid approximation, as long as
one sets ~aa� ¼ 1.

In the limit when ~ss ! 0, the maximum mean load will occur closer
and closer to the point eDD ¼ eCCþ 1. Now, when eDD ¼ eCCþ 1, we know that
the minimum in /ð~aaÞ occurs at ~aa ¼ 1. Likewise, for the approximation
to /ð~aaÞ, ~aa� ! 1. Hence, in the small ~ss limit, a good approximation to
(A17) is

ePPð eDDÞ � f ð1Þhð1Þ
8

erfc
eDD� eCC� 1ffiffiffi

2
p

~ss

 !
¼ � 1

2
erfc

eDD� eCC� 1ffiffiffi
2

p
~ss

 !
: ðA18Þ

Now, for small ~ss and eDD less than eCCþ 1, Equation (A18) predictsePPð eDDÞ ! �erfc �1ð Þ=2 ¼ �1��. That is P ! Pc, where Pc is the JKR
failure load. This is just what we expect, because all the fibrils will fail
at the same time, i.e., when the JKR failure load is reached, for no

length variation. Unfortunately, because ePPð eDDÞ ¼ �1 effectively for

all eDD < eCCþ 1, Equation (A18) does not allow one to determine the
scaling of the maximum tensile load with ~ss at small ~ss. This is true
because Equation (A18) is valid only for eDD close to eCCþ 1. However,

by a simple physical argument, one may approximate ePPð eDDÞ for smallereDD; this allows one to extract the scaling of max½� ePPð eDDÞ� with ~ss and eCC at
small ~ss. See the discussion section in the main text.

��Note that ePPð eDDÞ goes to �1 rather than þ1 as shown in Figures 2 and 3 because we
did not change the sign of ePP here, as we did in those figures. (Note the contact mechanics
convention that negative forces are tensile, which is opposite to the usual solid mech-
anics convention.)
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